Homochiral Group Transfer in Organic Synthesis *via* **a-Diazocarbonyl Intermediates**

Jeremiah C. Collins, Brid M. Dilworth, Norah T. Garvey, Michael Kennedy, M. Anthony McKervey," and Michael B. O'Sullivan

Department of Chemistry, University College, Cork, Ireland

Optically active diazoketones derived from N-protected amino acids and (S)-2-chloropropionic acid have been used as homochiral group transfer reagents in the synthesis of various optically active α -functionalised ketones and related compounds.

group to a substrate *via* diazoketone formation and decomparomatic substitution, aromatic cycloaddition, and $\alpha\alpha$ -substi- the synthesis of potentially useful homochiral molecules.

In principle it should be possible to transfer a homochiral tution. The recent report² of the use of a diazoketone derived group to a substrate *via* diazoketone formation and decomp-
from (R) -lactic acid to transfer a osition using any **of** the many characteristic versions1 of the dibenzylphosphate prompts us to describe several new latter such **as** cyclopropanation, **C-H** insertion, electrophilic examples of the application of this group transfer technique to

 $CB_z = PhCH₂OC(0;);$ Ts = $OSO₂C₆H₄Me$

Natural amino acids offer a ready entry into the homochiral diazoketone series. N-Protected L-alanine, L-phenylalanine, and L-proline **(1)—(3)** were prepared by standard procedures and transformed into diazoketones (4)–(6), respectively, in good yields *via* acyl chloride or mixed anhydride formation followed by exposure to ethereal diazomethane. In another series, (S) - (2) -chloropropionic acid was similarly transformed into diazoketone **(7).** NMR studies employing chiral shift reagents confirmed that diazoketone formation was racemization free. Metal catalysed and stoicheiometric modes of decomposition of these diazoketones were examined in the following areas.

(i) **C-H** insertion. Treatment of cyclohexane with **(7)** in the presence of a catalytic amount of rhodium(II) mandelate³ led to smooth C-H insertion furnishing chloroketone **(8) (60%** yield), $[\alpha]_D^{20}$ –54.2° *(c* 7.00, CH₂Cl₂).

(ii) Aromatic cycloaddition. Diazoketone **(7)** reacted with benzene also under rhodium(II) catalysis yielding the unstable cycloheptatriene **(9)** which re-aromatised to benzyl chloroketone **(10)** (59%), $[\alpha]_D^{20} -18.2^\circ$ (c 3.8, CH₂Cl₂), on standing or on brief exposure to trifluoroacetic acid. In a similar fashion, the alanine and proline derived diazoketones **(4a)** and **(6)** reacted catalytically with benzene to afford cycloheptatrienyl adducts which were readily rearranged into benzyl ketones **(11)** (55%), m.p. 89--91 °C, $[\alpha]_D^{20}$ -28.6° (c 10.0, CH₂Cl₂), and **(12)** (31%), m.p. 111–114 °C, $[\alpha]_D^{20}$ –152.1° (c 0.7 , $CH₂Cl₂$), respectively.

(iii) Cyclopropanation. Several alkenes were successfully cyclopropanated with diazoketone **(7)** under rhodium(r1) mandelate catalysis, the formation of chromatographically separable adducts, exo-anti-cyclopropane (13) (14%) , $\alpha|D^{20}$ -25.0° (c 9.5, CH₂Cl₂), and *exo-syn-cyclopropane* (14) (36%) , $[\alpha]_{D}^{20}$ -17.3 (c 4.8, CH₂Cl₂), from norbornene providing a typical example. We presumed at the inception of this study that rhodium(II) catalysed decomposition of diazoketones of type (4)--(7) would not compromise their homochirality and this could be confirmed by NMR chiral shift studies on the product **(11)** of the reaction of **(4a),** and of its racemate, with benzene.

(iv) $\alpha\alpha$ -Substitution. This fourth process, in which nitrogen

is replaced by a new functional group, represents a particularly useful mode of diazoketone decomposition, offering a route to a variety of optically active α -functionalised ketones. For example, treatment of diazoketone **(7)** with toluene-p-sulphonic acid (1 equiv.) in diethyl ether at 20 "C furnished tosylate (15), m.p. 45.5-46.5 °C, $[\alpha]_{D}^{20}$ -43.1° (c 8.2, CH_2Cl_2). In the amino ketone series, treatment of diazoketone **(4c)** with toluene-p-sulphonic, hydrochloric, or hydrobromic acid produced the appropriate α -functionalised ketone **(16).** The absence of racemization in these reactions was inferred from the fact that reaction of diazoketone **(4a)** with (+)-camphorsulphonic acid gave a single diastereoisomeric sulphonate (17) , whereas use of the $(±)$ -diazoketone furnished a 50:50 mixture of diastereoisomers. $\alpha\alpha$ -Substitution with thiophenol was also possible, though in this case r hodium (n) catalysis was required, a representative example being the conversion of diazoketone $(4b)$ into α -(phenylthio)ketone (18), $[\alpha]_D^{20}$ -2.9(c 14, CH₂Cl₂) in 85% yield. Ketone **(18)** provides access to other homochiral intermediates. For example, reduction with baker's yeast furnished a single alcohol (19) (74%), m.p. 93 °C, $[\alpha]_D^{20} + 3.6$ (c 4.7, CH_2Cl_2) [NaBH₄ reduction afforded (19) and its epimer in a 70 : 30 ratio] whose stereochemistry was established by NMR analysis of the oxazolidone **(20)** produced on treatment with sodium hydroxide. Deprotection of **(18)** with hydrochloric acid yielded the crystalline aminoketone hydrochloride **(21),** m.p. $130-132$ °C, $[\alpha]_D^{20}$ –5.95° (3.8, MeOH).

(v) β -Diketone formation. A final example illustrates the

formation of a lithiated diazoketone and its conversion into an optically active β -dicarbonyl compound. Treatment of a mixture (1 : 4 molar ratio) of diazoketone **(5b)** and benzaldehyde in tetrahydrofuran at -100 °C with lithium di-isopropylamide (LDA) furnished a separable mixture of two diazoketols **(22)** (79%) which were readily rearranged by rhodium(π) acetate catalysis⁴ into the same diketone (23) (69%) , $[\alpha]_D^{20} -35.1^\circ$ *(c 10.6, CHCl₃)*.

We thank Glaxo Group Research Ltd. for a research studentship (to M. B. O'S.) and Dr. Peter Myers for valuable discussions. We are indebted to **A.** H. Marks and Co. Ltd. for the generous gift of (R) - and (S) -2-chloropropionic acid.

Received, 24th October 1989; Corn. 9/04575I

References

- 1 For a comprehensive survey of these reactions, see G. Maas, *Top.* Curr. *Chem.,* 1987, **137,** *75,* and references therein.
- 2 N. Bishofberger, H. Waldmann, T. Saito, **E. S.** Simon, W. Lees, M. D. Bednarski, and G. M. Whitesides, J. Org. *Chem.,* 1988,53, 3457.
- 3 M. Kennedy, M. **A.** McKervey, **A.** R. Maguire, andG. H. P. Roos, *J. Chem. SOC., Chem. Commun.,* preceding communication; **M.** Kennedy and M. **A.** McKervey, *ibid.,* 1988, 1028.
- **4** This type of rhodium(I1) catalysed rearrangement was first reported by R. Pellicciari, R. Fringuelli, P. Ceccherelli, and E. Sisani, *J. Chem. SOC., Chem. Commun.,* 1979,959.